HMM-前向后向算法理解与实现(python)

技术分享4年前 (2020)更新 技术分享
2,573 0 0

目录

  • 基本要素
  • HMM三大问题
  • 概率计算问题
    • 前向算法
    • 后向算法
    • 前向-后向算法

基本要素

  • 状态 \(N\)

  • 状态序列 \(S = s_1,s_2,…\)

  • 观测序列 \(O=O_1,O_2,…\)

  • \(\lambda(A,B,\pi)\)

    • 状态转移概率 \(A = \{a_{ij}\}\)
    • 发射概率 \(B = \{b_{ik}\}\)
    • 初始概率分布 \(\pi = \{\pi_i\}\)
  • 观测序列生成过程

    • 初始状态
    • 选择观测
    • 状态转移
    • 返回step2

HMM三大问题

  • 概率计算问题(评估问题)

给定观测序列 \(O=O_1O_2…O_T\),模型 \(\lambda (A,B,\pi)\),计算 \(P(O|\lambda)\),即计算观测序列的概率

  • 解码问题

给定观测序列 \(O=O_1O_2…O_T\),模型 \(\lambda (A,B,\pi)\),找到对应的状态序列 \(S\)

  • 学习问题

给定观测序列 \(O=O_1O_2…O_T\),找到模型参数 \(\lambda (A,B,\pi)\),以最大化 \(P(O|\lambda)\)

概率计算问题

给定模型 \(\lambda\) 和观测序列 \(O\),如何计算\(P(O| \lambda)\)

暴力枚举每一个可能的状态序列 \(S\)

  • 对每一个给定的状态序列

    \[P(O|S,\lambda) = \prod^T_{t=1} P(O_t|s_t,\lambda) =\prod^T_{t=1} b_{s_tO_t} \]

  • 一个状态序列的产生概率

    \[P(S|\lambda) = P(s_1)\prod^T_{t=2}P(s_t|s_{t-1})=\pi_1\prod^T_{t=2}a_{s_{t-1}s_t} \]

  • 联合概率

    \[P(O,S|\lambda) = P(S|\lambda)P(O|S,\lambda) =\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}\prod^T_{t=1} b_{s_tO_t} \]

  • 考虑所有的状态序列

    \[P(O|\lambda)=\sum_S\pi_1b_{s_1O_1}\prod^T_{t=2}a_{s_{t-1}s_t}b_{s_tO_t} \]

\(O\) 可能由任意一个状态得到,所以需要将每个状态的可能性相加。

这样做什么问题?时间复杂度高达 \(O(2TN^T)\)。每个序列需要计算 \(2T\) 次,一共 \(N^T\) 个序列。

前向算法

在时刻 \(t\),状态为 \(i\) 时,前面的时刻观测到 \(O_1,O_2, …, O_t\) 的概率,记为 \(\alpha _i(t)\)

\[\alpha_{i}(t)=P\left(O_{1}, O_{2}, \ldots O_{t}, s_{t}=i | \lambda\right) \]

\(t=1\) 时,输出为 \(O_1\),假设有三个状态,\(O_1\) 可能是任意一个状态发出,即

\[P(O_1|\lambda) = \pi_1b_1(O_1)+\pi_2b_2(O_1)+\pi_2b_3(O_1) = \alpha_1(1)+\alpha_2(1)+\alpha_3(1) \]

HMM-前向后向算法理解与实现(python)

\(t=2\) 时,输出为 \(O_1O_2\)\(O_2\) 可能由任一个状态发出,同时产生 \(O_2\) 对应的状态可以由 \(t=1\) 时刻任意一个状态转移得到。假设 \(O_2\) 由状态 1 发出,如下图

HMM-前向后向算法理解与实现(python)

\[P(O_1O_2,s_2=q_1|\lambda) = \pi_1b_1(O_1)a_{11}b_1(O_2)+\pi_2b_2(O_1)a_{21}b_1(O_2)+\pi_2b_3(O_1)a_{31}b_1(O_2) \\ =\bold{\alpha_1(1)}a_{11}b_1(O_2)+\bold{\alpha_2(1)}a_{21}b_1(O_2)+\bold{\alpha_3(1)}a_{31}b_1(O_2) = \bold{\alpha_1(2)} \]

同理可得 \(\alpha_2(2),\alpha_3(2)\)

\[\bold{\alpha_2(2)} = P(O_1O_2,s_2=q_2|\lambda) =\bold{\alpha_1(1)}a_{12}b_2(O_2)+\bold{\alpha_2(1)}a_{22}b_2(O_2)+\bold{\alpha_3(1)}a_{32}b_2(O_2) \\ \bold{\alpha_3(2)} = P(O_1O_2,s_2=q_3|\lambda) =\bold{\alpha_1(1)}a_{13}b_3(O_2)+\bold{\alpha_2(1)}a_{23}b_3(O_2)+\bold{\alpha_3(1)}a_{33}b_3(O_2) \]

所以

\[P(O_1O_2|\lambda) =P(O_1O_2,s_2=q_1|\lambda)+ P(O_1O_2,s_2=q_2|\lambda) +P(O_1O_2,s_2=q_3|\lambda)\\ = \alpha_1(2)+\alpha_2(2)+\alpha_3(2) \]

所以前向算法过程如下:

​ step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)

​ step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i(T)\)

相比暴力法,时间复杂度降低了吗?

当前时刻有 \(N\) 个状态,每个状态可能由前一时刻 \(N\) 个状态中的任意一个转移得到,所以单个时刻的时间复杂度为 \(O(N^2)\),总时间复杂度\(O(TN^2)\)

代码实现

例子:

假设从三个 袋子 {1,2,3}中 取出 4 个球 O={red,white,red,white},模型参数\(\lambda = (A,B,\pi)\) 如下,计算序列O出现的概率

#状态 1 2 3
A = [[0.5,0.2,0.3],
	 [0.3,0.5,0.2],
	 [0.2,0.3,0.5]]

pi = [0.2,0.4,0.4]

# red white
B = [[0.5,0.5],
	 [0.4,0.6],
	 [0.7,0.3]]

​ step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)

​ step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i( T)\)

#前向算法
def hmm_forward(A,B,pi,O):
    T = len(O)
    N = len(A[0])
    #step1 初始化
    alpha = [[0]*T for _ in range(N)]
    for i in range(N):
        alpha[i][0] = pi[i]*B[i][O[0]]

    #step2 计算alpha(t)
    for t in range(1,T):
        for i in range(N):
            temp = 0
            for j in range(N):
                temp += alpha[j][t-1]*A[j][i]
            alpha[i][t] = temp*B[i][O[t]]
            
    #step3
    proba = 0
    for i in range(N):
        proba += alpha[i][-1]
    return proba,alpha

A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
pi = [0.2,0.4,0.4]
O = [0,1,0,1]
hmm_forward(A,B,pi,O)  #结果为 0.06009

结果

HMM-前向后向算法理解与实现(python)

后向算法

在时刻 \(t\),状态为 \(i\) 时,观测到 \(O_{t+1},O_{t+2}, …, O_T\) 的概率,记为 \(\beta _i(t)\)

\[\beta_{i}(t)=P\left(O_{t+1},O_{t+2}, …, O_T | s_{t}=i, \lambda\right) \]

\(t=T\) 时,由于 \(T\) 时刻之后为空,没有观测,所以 \(\beta_i(t)=1\)

\(t = T-1\) 时,观测 \(O_T\)\(O_T\) 可能由任意一个状态产生

\[\beta_i(T-1) = P(O_T|s_{t}=i,\lambda) = a_{i1}b_1(O_T)\beta_1(T)+a_{i2}b_2(O_T)\beta_2(T)+a_{i3}b_3(O_T)\beta_3(T) \]

HMM-前向后向算法理解与实现(python)

\(t=1\) 时,观测为 \(O_{2},O_{3}, …, O_T\)

\[\begin{aligned} \beta_1(1) &= P(O_{2},O_{3}, …, O_T|s_1=1,\lambda)\\ &=a_{11}b_1(O_2)\beta_1(2)+a_{12}b_2(O_2)\beta_2(2)+a_{13}b_3(O_2)\beta_3(2) \\ \quad \\ \beta_2(1) &= P(O_{2},O_{3}, …, O_T|s_1=2,\lambda)\\ &=a_{21}b_1(O_2)\beta_1(2)+a_{22}b_2(O_2)\beta_2(2)+a_{23}b_3(O_2)\beta_3(2) \\ \quad \\ \beta_3(1) &=P(O_{2},O_{3}, …, O_T|s_1=3,\lambda)\\ &=a_{31}b_1(O_2)\beta_1(2)+a_{32}b_2(O_2)\beta_2(2)+a_{33}b_3(O_2)\beta_3(2) \end{aligned} \]

所以

\[P(O_{2},O_{3}, …, O_T|\lambda) = \beta_1(1)+\beta_2(1)+\beta_3(1) \]

后向算法过程如下:

​ step1:初始化 \(\beta_i(T)=1\)

​ step2:计算 \(\beta_i(t) = \sum^N_{j=1}a_{ij}b_j(O_{t+1})\beta_j(t+1)\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\pi_ib_i(O_1)\beta_i(1)\)

  • 时间复杂度 \(O(N^2T)\)

代码实现

还是上面的例子

#后向算法
def hmm_backward(A,B,pi,O):
    T = len(O)
    N = len(A[0])
    #step1 初始化
    beta = [[0]*T for _ in range(N)]
    for i in range(N):
        beta[i][-1] = 1
        
    #step2 计算beta(t)
    for t in reversed(range(T-1)):
        for i in range(N):
            for j in range(N):
                beta[i][t]  += A[i][j]*B[j][O[t+1]]*beta[j][t+1]
            
    #step3
    proba = 0
    for i in range(N):
        proba += pi[i]*B[i][O[0]]*beta[i][0]
    return proba,beta

A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
pi = [0.2,0.4,0.4]
O = [0,1,0,1]
hmm_backward(A,B,pi,O)  #结果为 0.06009

结果

HMM-前向后向算法理解与实现(python)

前向-后向算法

HMM-前向后向算法理解与实现(python)

回顾前向、后向变量:

  • \(a_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_1,O_2, …, O_t\) 的概率
  • \(\beta_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_{t+1},O_{t+2}, …, O_T\) 的概率

\[\begin{aligned} P(O,s_t=i|\lambda) &= P(O_1,O_2, …, O_T,s_t=i|\lambda)\\ &= P(O_1,O_2, …, O_t,s_t=i,O_{t+1},O_{t+2}, …, O_T|\lambda)\\ &= P(O_1,O_2, …, O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, …, O_T|O_1,O_2, …, O_t,s_t=i,\lambda) \\ &= P(O_1,O_2, …, O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, …, O_T,s_t=i|\lambda)\\ &= a_i(t)*\beta_i(t) \end{aligned} \]

即在给定的状态序列中,\(t\) 时刻状态为 \(i\) 的概率。

使用前后向算法可以计算隐状态,记 \(\gamma_i(t) = P(s_t=i|O,\lambda)\) 表示时刻 \(t\) 位于隐状态 \(i\) 的概率

\[P\left(s_{t}=i, O | \lambda\right)=\alpha_{i}(t) \beta_{i}(t) \]

\[\begin{aligned} \gamma_{i}(t) &=P\left(s_{t}={i} | O, \lambda\right)=\frac{P\left(s_{t}={i}, O | \lambda\right)}{P(O | \lambda)} \\ &=\frac{\alpha_{i}(t) \beta_{i}(t)}{P(O | \lambda)}=\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)} \end{aligned} \]

references:

[1] https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[2]https://www.cnblogs.com/fulcra/p/11065474.html

[3] https://www.cnblogs.com/sjjsxl/p/6285629.html

[4] https://blog.csdn.net/xueyingxue001/article/details/52396494

© 版权声明

相关文章

暂无评论

您必须登录才能参与评论!
立即登录
暂无评论...